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Overview

”There is nothing more practical then a good theory” - L. Boltzmann

• An elementary, “structural” approach to the analysis and interpreta-

tion of data by means of economic theory.

• It is somewhat distinct from structural econometrics because

– it avoids having to resort to error terms

– minimises the use of untestable assumptions

– is expressed in terms of empirical inequalities.



Overview

• Typically we use economic theory to develop formal statements con-

cerning causes and effects.

– causes (explanatory variables) which may be observed (x) or un-

observed (η)

– effects (endogenous variables, y)

• These are linked by structural equations which are theory-driven

y = f(x,η, θ)

where θ represents a set of unknown parameters or functions.



Overview

Econometricians always then append a statistical structure to the economic

model in order to account for the fact that the model does not perfectly

explain the data.

“The ... interpretation is that the true utility used by consumers to

make choices is deterministic, but due to the researcher’s inability

to formulate individual behavior precisely, an additional stochastic

term is added, thus making utility stochastic from the researcher’s

point of view (see Manski 1977; McFadden 1981, 1984). This is

the interpretation followed in the economics literature” - Nevo

(Annual Reviews of Economics, 2011, p. 59)



Overview

This relatively recent, authoritative survey echoes identical views expressed

nearly 70 years earlier by Haavelmo:

“Observable economic variables do not satisfy exact relationships

(except, perhaps, some trivial identities). Therefore, if we start

out with such a theoretical scheme, we have - for the purpose of

application - to add some stochastical elements, to bridge the gap

between the theory and the facts.” - Haavelmo, (Econometrica,

1944.)



Overview

• This extra structure entails

– the introduction of unobservable econometric error terms (ε)

– statistical assumptions regarding the joint distribution of (x,η, ε)

• When combined these economic and statistical assumptions deliver an

empirical model that is capable of rationalising any set of observables.



Overview

• The art of structural econometric modelling thus mainly lies in getting

this statistical aspect right, because the source and the properties of

these econometric errors ε can have a critical impact on the estimation

results.

• This can be a challenge because:

– economic theories, which are by and large completely deterministic,

generally have little to say about the statistical model,

– the data have generally little to say about the unobserved (η) and

unobservable (ε).



Overview

• Empirical revealed preference also begins from economic theory, is
entirely different to the “y = f(x,η, θ, ε)” type of framework.

• Uses systems of inequalities which depend neither on the form of struc-
tural functions nor on unobservables.

• Statistical error terms and specific assumptions about the functional
structure of the economic model may be added but it is not an essential
requirement.

• In a sense empirical revealed preference is concerned with what we can
learn simply by combining economic theory with the features of the
world that we can observe.



Consumer Theory

max
q
u (q) subject to p′tq ≤ xt

• Suppose we observe some data on prices and choices {pt,qt}t=1,...,T

for an individual consumer.

– If the data were generated by the model, what properties must they

necessarily have?

– If the observed data have these properties, is that sufficient to

know that they could have been generated by the model?

• What are the necessary and sufficient conditions for this model?



Necessity and Sufficiency

• Necessity and sufficiency are implicational relations between state-
ments.

• Necessity: If A⇒ B then B is a necessary condition for A.

– If A is true B then is necessarily true.

– In particular A⇒ B is equivalent to ¬B ⇒¬ A

• Sufficiency: If A⇐ B then B is a sufficient condition for A.

– If B is true then that is sufficient to know that A is true too.

– In particular A⇐ B is equivalent to ¬A⇒¬ B



Necessity and Sufficiency

• The assertion that one statement is necessary and sufficient for another

means that the former statement is true if and only if the latter is true.

A⇔ B

• That is, the two statements are

– equivalent

– simultaneously true or simultaneously false.

A⇒ B, ¬B ⇒¬ A, B ⇒ A, ¬A⇒¬ B



Necessity and Sufficiency

max
q
u (q) subject to p′tq ≤ xt

• Suppose we observe some data on prices and choices {pt,qt}t=1,...,T

for an individual consumer.

– If the data were generated by the model what properties must the

data necessarily have?

– If we observe these properties in some data, is that sufficient to

know that the data could have been generated by the model?



Afriat’s Theorem

We are interested in whether there is agreement between theory and data.

We first need to define what that means.

Definition: A utility function u (q) rationalises the data {pt,qt}t=1,...,T if

u (qt) ≥ u (q) for all q such that p′tqt ≥ p′tq.



Afriat’s Theorem∗

The following statements are equivalent:

A. there exists a utility function u (q) which is continuous, non-

satiated and concave which rationalises the data {pt,qt}t=1,...,T .

B1. there exist numbers {Ut, λt > 0}t=1,...,T such that

Us ≤ Ut + λtp
′
t (qs − qt) ∀ s, t ∈ {1, ..., T}

B2. the data {pt,qt}t=1,...,T satisfy the Generalised Axiom of

Revealed Preference (GARP).

C. there exists a non-satiated utility function u (q) which ratio-

nalises the data {pt,qt}t=1,...,T .

∗Afriat (1967), Diewert (1973), Varian (1982).



Afriat’s Theorem

• We are going to take A to be true and work out why it implies the

condition B1.

• By concavity of u (q) we have

u (qs) ≤ u (qt) + ∇u (qt)
′ (qs − qt)

• Optimising behaviour implies the first-order condition ∇u (qt) ≤ λtpt
where λt > 0 and with equality when qkt > 0.



Afriat’s Theorem

• Putting the foc into the concavity condition preserves the inequality

and gives

u (qs) ≤ u (qt) + λtp
′
t (qs − qt)

• Utility functions are real-valued so there must therefore exist real num-

bers {Ut, λt > 0}t=1,...,T corresponding to the values of u (qt) and λt

Us ≤ Ut + λtp
′
t (qs − qt) ∀ s, t ∈ {1, ..., T}

• This is condition B1.



Afriat’s Theorem

• We are going to take B1 to be true (i.e. that we observe some data for

which this condition holds) and work out why it implies the condition

A.

• The path we are going to take is constructive: we are going to build

a utility function out of the available raw materials and show that it

does indeed rationalise the data.

• The raw materials are a set of {Ut, λt > 0}t=1,...,T which satisfy the

inequalities

Us ≤ Ut + λtp
′
t (qs − qt) ∀ s, t ∈ {1, ..., T}



Afriat’s Theorem

• Let

u (q) = min
s∈{1,..,T}

{
Us + λsp

′
s (q− qs)

}
s=1,...,T

be our utility function (it’s piecewise linear, continuous, non-satiated,

and concave).

• We now need to show that this rationalises the data.

• That means that u (qt) ≥ u (q) for all q such that p′tqt ≥ p′tq.



Afriat’s Theorem

• Suppose we have some q with p′tqt ≥ p′tq. We need to show that

∃ some u(q) such that u(qt) ≥ u(q)

• Firstly consider the observation qt.

• What utility number does our function associate with it?

u (qt) = min
s∈{1,..,T}

{
Us + λsp

′
s (qt − qs)

}



Afriat’s Theorem

• One element of the set concerns the case where t = s in which case

the corresponding element is:

Ut + λtp
′
t (qt − qt) = Ut

• We know that Ut ≤ Us + λsp′s (qt − qs) ∀ s, t

• Therefore Ut ≤ mins∈{1,...,T}
{
Us + λsp′s (qt − qs)

}

• So our utility function assigns

u (qt) = Ut



Afriat’s Theorem

• Now consider the affordable alternative q. What utility number does

our function associate with it?

u (q) = min
s∈{1,..,T}

{
Us + λsp

′
s (q− qs)

}

• We know that

u (q) = min
s∈{1,..,T}

{
Us + λsp

′
s (q− qs)

}
≤ Ut + λtp

′
t (q− qt)



Afriat’s Theorem

• Finally λt > 0 and p′tqt ≥ p′tq means λtp′t (q− qt) ≤ 0. So u (q) ≤
Ut

• Therefore we have shown that for any q with p′tqt ≥ p′tq

u(q) ≤ u(qt)

• Hence that our utility function rationalises the data in the required

sense.



Afriat’s Theorem

• Afriat’s Theorem presents necessary and sufficient conditions for the

standard utility-maximisation model.

• It shows that if a dataset can be rationalised by any utility function

then it can in fact be rationalised by a well-behaved one - with com-

petitive pricing non-convexities are ”shrouded in enternal darkness”

• It is therefore exhaustive: it summarises ALL of the empirical impli-

cations which come from the basic model without making any special

assumptions on functional forms (other than those needed for well-

behavedness).



Afriat’s Theorem

Definition: Given an observation qt and a bundle q:

(i) qt is directly revealed preferred to q, written qtR0q

if p′tqt ≥ p′tq
(ii) qt is strictly directly revealed preferred to q, written qtP0q if

p′tqt ≥ p′tq ;

(iii) qt is revealed preferred to q, written qtRq if p′tqt ≥ p′tqu,

p′uqu ≥ p′uqv, ..., p′vqv ≥ p′vq for some sequence of observations

qt,qu,qv, ...,q,. In this case we say that the relation R is the

transitive closure of the relation R0.

(iv) qt is strictly revealed preferred to q, written qtPq , if there

exist observations qi and qj such that qtRqi, qiP0qj, qjRq.



Afriat’s Theorem

GARP: qtRqs implies NOT qsP0qt

If a consumption bundle qt is revealed preferred to a consumption bundle

qs, then qs cannot be strictly directly revealed preferred to qt.



Afriat’s Theorem

Suppose that we have four observations {pt,qt}t=1,...,4 and that

p′1q1 ≥ p′1q3 : q1R0q3

p′2q2 > p′2q1 : q2P0q1 (also q2R0q1)

p′2q2 ≥ p′2q4 : q2R0q4

p′3q3 ≥ p′3q2 : q3R0q2



Afriat’s Theorem

We can write this into a matrix m where mst = 1 if qsR0qt and zero

otherwise: 
1 0 1 0
1 1 0 1
0 1 1 0
0 0 0 1



In graph theory and computer science a square matrix made of zeros and

ones is used to represent a simple finite directed graph. It’s called an

“adjacency matrix”. The rows and columns label the graph vertices, with

a 1 or 0 in (row, col) (s, t) according to whether s and t are adjacent.



Afriat’s Theorem

In a “directed graph” the adjacency is directional, there is an edge from s

to t connecting them.

A directed graph has a cycle if it is possible to walk from any vertex and

follow a consistently-directed sequence of edges that eventually loops back

to that same vertex again.

GARP is a kind of “no-cyclic” condition on the directed graph generated

by the data.



Afriat’s Theorem

If we look at our data we can plot the directed graph for the R0 relations:

There is clearly a cycle starting/ending at q1:

q1R0q3, q3R0q2, q2R0q1



The potential problem (for economics) with this is that the first two steps

imply that this consumer prefers q1 to q2 (albeit indirectly via transitivity)

so

q1Rq2

whilst we have the direct relation

q2R0q1

This is only a “potential problem”: it is OK if and only if none of the

revealed preferences are strict - because they may be indifferent between

q1 and q2. But if there is a strict preference for q2 over q1 then GARP is

violated and the individual’s preferences are not representable by a utility

function.



Afriat’s Theorem

If we look at our data we can indicate the edges for the P0 relation:

Now we can see that q1 is revealed preferred to q2 and that q2 is directly

strictly revealed preferred to q1. Another way of putting it is that q1 is

revealed strictly preferred to itself.



Afriat’s Theorem

• The Strong Axiom of Revealed Preference,

qtRqs and qt 6= qs implies NOT qsR
0qt

• SARP implies GARP, but not vice versa.

• SARP requires single valued demand functions while GARP is com-

patible with multivalued demand functions (correspondences).



Afriat’s Theorem

• The Weak Axiom of Revealed Preference

qtR
0qs and qt 6= qs implies NOT qsR

0qt

• Does not involve transitivity.

• Is necessary and sufficient for utility maximisation when there are only

two goods - why?



Afriat’s Theorem - Some history

• The theory of revealed preference was first introduced by Paul Samuel-

son in his 1938 Economica article.

• Samuelson’s view was that economics was really about derivation of

”meaningful theorems”

”By a meaningful theorem I mean simply a hypothesis about empirical

data which could conceivably be refuted.”

P. Samuelson, Foundations of Economic Analysis, p.4, (1947).



Afriat’s Theorem - Some history

• His aim was to derive testable implications of theory without first pos-

tulating a utility function that represents the consumer’s preferences.

• He argued that the testable implications of the theory should be based

on axioms about observable demands rather than on axioms about

unobservable preferences.

• The focus on the observable rather than the unobservable remains at

the heart of the topic.



Afriat’s Theorem - Some history

• Houthakker (1950) extended Samuelson’s work by introducing the

Strong Axiom of Revealed Preference (SARP).

• SARP works for any number of budget sets and works by exploiting

transitivity.

• He also demonstrated that demand functions satisfy SARP if and only

if they are the result of the maximisation of well-behaved preferences

subject to the consumer’s budget constraint.

• Clearly, this establishes a close link, also recognised by Samuelson,

between the axioms about demand and the axioms about preferences.



Afriat’s Theorem - Some history

• But both Samuelson and Houthakker assumed that the researcher

could observe the entire demand system.

• If you could observe the entire demand system then the question of

testable implications could as easily be addressed using the ”standard”

differential approach which goes back to Slutsky (1915) and Antonelli

(1886).

• But we do not observe the entire demand system.

• We only ever observed a finite number of observations.



Afriat’s Theorem - Some history

• The structural econometric approach makes up for this “data deficit”

by fitting functions to the (finite) data.

• These functions are like having an infinite amount of data - once

estimated we can evaluate them anywhere/everywhere and check the

integrability conditions.

• Of course this is easier said than done.



Afriat’s Theorem - Some history

• In particular, in order to estimate them consistently, requires us to

make untestable auxiliary statistical assumptions.

• Any test of the hypothesis of maximising behaviour therefore is really

a test of a joint hypothesis: the behaviour of interest plus the auxiliary

statistical hypotheses required to deliver the estimate.

• This is the essence of the Duhem-Quine problem in the philosophy of

science.



Afriat’s Theorem - Some history

• Afriat in his 1967 International Economic Review article focussed on,

and solved, the same problem but with only a finite number of obser-

vations.

• This might seems a small thing but it was the key to liberating applied

work from the need to rely on assumed properties of unobserved and

unobservable quantities.

• In that sense it represents the fruition of Samuelson’s quest for a truly

Meaningful Theorem.



Afriat’s Theorem - Some history

• There was a very important further contribution by Erwin Diewert in

the Review of Economic Studies in 1973.

• He analysed which assumptions on the utility function must be satisfied

so that a solution to the utility maximisation problem exists in the first

place. This was ignored in Afriat (1967).

• It turned out that the assumption of local non-satiation is crucial in

this respect. Without local non-satiation, it may be the case that there

is no solution to the utility maximisation problem.



Afriat’s Theorem - Some history

• Moreover, without local non-satiation, any set of observed choices can

be rationalised by a utility function in a trivial way - by resorting to

”thick” indifference curves.

• Diewert (1973) also demonstrated that a linear programme can be

constructed to solve the testability and recoverability questions.

• This was the first step on the way to translating Afriat’s rather im-

penetrable work into something which could actually be applied.



Afriat’s Theorem - Some history

• Varian’s contributions begins with his 1982 Econometrica article.

• He solved or simplified many of the most important computational

aspects of revealed preference

• He also extended Afriat’s and Diewert’s work by considering the re-

coverability and extrapolation questions.



Applying Afriat’s Theorem

• Applied consumer theory typically addresses three sorts of issues:

1. Consistency. When is observed behaviour consistent with the model?

2. Recoverability/The inverse problem. How can we recover preferences

given observations on consumer behavior?

3. Extrapolation/The forward problem. Given consumer behaviour for

some budgets how can we forecast behaviour for other budgets?



Applying Afriat’s Theorem

• Doing applied work using RP restrictions requires a completely dif-

ferent set of techniques than does the “y = f(x,η, θ, ε)” type of

framework.

• The methods are mainly algorithmic or combinatorial - more typically

learned when studying operations research than economics.



Applying Afriat’s Theorem

• Given some data {pt,qt}t=1,...,T to check for consistency with the

theory we can either

1. Determine whether there exist numbers {Ut, λt > 0}t=1,...,T such that

Us ≤ Ut + λtp
′
t (qs − qt) ∀ s, t ∈ {1, ..., T}

2. Determine whether the data satisfy GARP.



Applying Afriat’s Theorem

• Suppose we have just two observations {p1,p2;q1,q2}.

• Then the Afriat Inequalities

Us ≤ Ut + λtp
′
t (qs − qt) and λt > 0, ∀ s, t ∈ {1, 2}

are (explicitly)

U1 − U1 − λ1p
′
1 (q1 − q1) ≤ 0

U1 − U2 − λ2p
′
2 (q1 − q2) ≤ 0

U2 − U1 − λ1p
′
1 (q2 − q1) ≤ 0

U2 − U2 − λ2p
′
2 (q2 − q2) ≤ 0

−λ1 < 0

−λ2 < 0



Applying Afriat’s Theorem

• This can be written, more compactly, as

0 0 0 0
1 −1 0 −p′2 (q1 − q2)
−1 1 −p′1 (q2 − q1) 0
0 0 0 0
0 0 −1 0
0 0 0 −1




U1
U2
λ1
λ2

 ≤


0
0
0
0
−ε
−ε


where the ε represent arbitrarily small constants.



Applying Afriat’s Theorem

• The check for consistency is therefore whether (or not) there exists a

vector x such that

Ax ≤ b

• In essence we are asking whether there exist a solution to a set of

linear inequalities

• This is a linear programming problem. Linear programs are problems

that can be expressed in the general form:

max
x

c′x subject to Ax ≤ b



Applying Afriat’s Theorem

• The ”simplex algorithm”, developed by George Dantzig in 1947, solves
LP problems by

1. constructing a feasible solution iff a solution exists, and then

2. optimising it.

• We are only concerned with Phase 1.

• Dantzig’s algorithm can determine whether or not there is a feasible
solution in a finite number of steps (a trial and error approach would,
conversely, never be guaranteed to stop).



Applying Afriat’s Theorem

• In general checking for consistency requires a linear program with 2T

variables and T 2 constraints.

• The fact that the number of constraints rises as the square of the

number of observations can makes this condition computationally de-

manding in practice for very large datasets.

• Condition B2 (GARP) is sometimes more efficient.

• This requires us to compute the transitive closure of a finite relation

but that is certainly a finite problem and Warshall (1962) gives a

solution in T 3 steps. It is very easy to implement.



Applying Afriat’s Theorem

GARP provides another way to test for utility maximisation.

1. Loop through the data and create the directed adjacency matrix m
for the R0 relation

2. Compute the transitive closure of the graph (Floyd-Warshall algorithm)
to fill in the implied R relations.

3. Loop through the data and create adjacency matrix n for the P0 rela-
tions

4. Add the two matrices and check there are no “2’s”.



Applying Afriat’s Theorem

In the example we had when showing the graph interpretation of GARP

we had the R0 graph:

m =


1 0 1 0
1 1 0 1
0 1 1 0
0 0 0 1


The transitive closure is

m =


1 1 1 0
1 1 0 1
0 1 1 0
0 0 0 1





Applying Afriat’s Theorem

In our example the P0 graph was:

n =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0



Adding data the P0 graph gives:

m+ n =


1 1 1 0
1 1 0 1
0 1 1 0
0 0 0 1

 +


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 =


1 1 1 0
2 1 0 1
0 1 1 0
0 0 0 1





Applying Afriat’s Theorem

The data used here is the Spanish Continuous Family Expenditure Survey

(the Encuesta Continua de Presupuestos Familiares - ECPF).

The ECPF is a quarterly budget survey of Spanish households which inter-

views about 3,200 households every quarter.

These households are randomly rotated at a rate of 12.5% each quarter.

It is possible to follow a participating household for up to eight consecutive

quarters.

It’s nationally representative and its coverage of expenditure is wide.



Applying Afriat’s Theorem

The data from the period 1985 to 1997 and are the selected sub-sample

of couples with and without children, in which the husband is in full-time

employment in a non-agricultural activity and the wife is out of the labour

force.

The dataset consists of 21,866 observations on 3,134 households.

It records household non-durable expenditures aggregated into 5 broad

commodity groups.

The price data are calculated from published prices aggregated to corre-

spond to the expenditure categories.

We check GARP individually for each member of the panel - no pooling.



Applying Afriat’s Theorem

Pass rate = 0.957



Applying Afriat’s Theorem

• Suppose we have some data {pt,qt}t=1,...,T which satisfies GARP.

• Since this individual has thus far been observed to behave in a way

which is perfectly consistent with utility maximisation, we can try to

recover their implied preferences.

• It is essential to understand that there may be more than one prefer-

ence relation which is consistent with the data (Afriat’s Theorem give

us one, there may be others).

• So the recoverability question focuses on identifying the set of prefer-

ences that are consistent with a given data set.



Applying Afriat’s Theorem

• Recoverability is based entirely on the restrictions upon behaviour im-

posed by GARP.

• The recoverability question aims at constructing inner and outer bounds

for the indifference curves passing through an arbitrary, not necessarily

observed, quantity bundle.

• The essential idea is to squeeze the indifference curve of interest be-

tween a set of bundles which are revealed preferred and a set which

are revealed worse.



Applying Afriat’s Theorem



Applying Afriat’s Theorem



Applying Afriat’s Theorem

• Suppose we have some data {pt,qt}t=1,...,T which satisfies GARP and
then present the consumer with a new budget {p0, x0}. What will the
consumer do?

• We will use the assumption that, since the individual has thus far been
observed to behave in a way which is perfectly consistent with utility
maximisation, she will continue to do so.

• Whatever she does, her new chosen bundle must therefore satisfy
GARP in combination with her previously-observed choices..

• Again there will typically be more than one bundle which satisfies this
restriction.



Applying Afriat’s Theorem

• The description of the forecast is that the new demand (q0) must lie

in the set defined by

S (p0, x0) =

{
q0 :

q0 ≥ 0, p′0q0 = x0
{p0,pt;q0,qt}t=1,...,T satisfies GARP

}

• That is it must be

– non-negative (although corners are fine)

– satisfy the budget constraint

– satisfy GARP when pooled with the observed choices.



Applying Afriat’s Theorem



Applying Afriat’s Theorem

• As the data becomes dense

– the RP test for consistency becomes more demanding

– the bounds on indifference curves become tighter

– the bounds on demand responses become tighter.

• If the data become perfectly dense (effectively an infinite dataset) we

have the indifference curve map and demand curves themselves.



Firms

• The most elementary way in which to describe a firm’s technology is

by means of its input requirement set V (y).

• This consists of all input vectors x that can produce at least the output

y

V (y) = {x : x can produce at least y}

• A key property of input requirement sets is that they must be nested:

Definition: Nestedness: If x is in V (y) and y ≥ y′, then x is in

V
(
y′
)
.



Firms

• The following are also typically assumed:

Definition: Monotonicity: If x is in V (y) and x′ ≥ x, then x′ is

in V (y)

Definition: Convexity: If x ∈ V (y) and x′ ∈ V (y) , then

λx + (1− λ)x′ ∈ V (y)

where λ ∈ [0, 1] .

Definition: Regularity: V (y) is a closed non-empty set for all y.



Firms

• Suppose that we observe a sequence of input vectors, input price vec-

tors and output production for a firm: {wt,xt, yt}t=1,...,T

• The most elementary behavioural hypothesis about the firm we can

entertain is that it is cost-minimising.

min
x

w′tx such that x ∈ V (yt)

– If the data were generated by the model what properties must the

data necessarily have?

– If the observed data with these properties in some data, is that

sufficient to know that the data could have been generated by the

model?



Firms

We are interested in the agreement between theory and data.

Definition: A family of input requirement sets V (y) rationalises

the data {wt,xt, yt}t=1,...,T if w′txt ≤ w′tx for all x ∈V (yt).



Firms

Theorem†. The following statements are equivalent:

A. there exists a family of nested input requirement sets V (y)

which rationalises the data {wt,xt, yt}t=1,...,T .

B. the data satisfies the Weak Axiom of Cost-Minimisation: yt ≤
ys implies w′txt ≤ w′txs

C. there exists a family of nested, convex, monotonic input require-

ment sets V (y) which rationalises the data {wt,xt, yt}t=1,...,T .

†Hanoch and Rothschild (1972), Diewert and Parkan (1979), Varian (1984).



Firms

• The empirical condition in statement (B) is known as the Weak Axiom
of Cost Minimisation (WACM).

• Compared to Afriat’s Theorem it is very straightforward to verify -
simply inspect the dataset and check the condition directly.

• The equivalence between (A) and (C) means that if the data can be
rationalised by any family of input requirement sets, then in fact it
can be rationalised by a ”nice” one and there is no harm is having
these extra properties.

• Another way to say the same thing is that, in a finite data setting,
these additional properties have no empirical content.



Firms

• We will take A to be true and show that it implies B (WACM).

• Let V (y) be a family of nested input requirement sets that rationalise

the data.

• If yt ≤ ys then nestedness means that xs ∈ V (yt).

• Since V (y) rationalises the data w′txt ≤ w′sxs. Thus

yt ≤ ys implies w′txt ≤ w′txs



Firms

• Now we will show that if B holds then C holds.

• Again (like Afriat’s Theorem) the proof is constructive - we will build

a family of input requirement sets out of the raw materials: a dataset

{wt,xt, yt}t=1,...,T which satisfies WACM.

• Let V (y) be the positive convex monotonic hull of the {xt}t=1,...,T

such that yt ≥ y

V (y) = com+{xt : yt ≥ y}



Firms

• This construction is closed, convex and monotonic.

• We need to show that this construction rationalises the data. That is

that for any xt it is the case that w′txt ≤ w′tx for all x ∈V (yt).

• The trick is to note that since the inequality of interest w′txt ≤ w′tx
is linear we only need to worry about the vertices.



Firms

• The next point is to realise that the construction means that all of
the vertices are observed input bundles. And we know that at the
observed bundles WACM (condition B) holds.

• Therefore w′txt ≤ w′txs for all xs∈V (yt).

• So xt is itself a vertex and lies on a supporting hyperplane with slope
given by wt. Therefore for any xt it is the case that w′txt ≤ w′tx.

• Lastly we know that C implies A since it is stronger. Thus we have

A⇒ B ⇒ C ⇒ A⇒ ...



Firms

• Instead of considering a set-theoretic object we can use a production

function.

Definition: A production function f (x) rationalises the data {wt,xt, yt}t=1,...,T

if f(xt) = yt and f(x) ≥ yt implies w′txt ≤ w′tx for t = 1, ..., T.

• It is useful, in the context of production functions, to add the require-

ment of continuity.



Firms

Theorem. The following statements are equivalent:

A. there exists continuous production function which rationalises

the data {wt,xt, yt}t=1,...,T .

B1. the data satisfy the Strong Axiom of Cost Minimisation:

ys ≤ yt implies w′sxs ≤ w′sxt

B2. there exist numbers {Ut, λt > 0}t=1,...,T such that

Us ≤ Ut + λtw
′
t (ws −wt) ∀ s, t ∈ {1, ..., T}

C. there exists a continuous, monotonic and quasi-concave pro-

duction function f (x) which rationalises the data {wt,xt, yt}t=1,...,T .



Firms

• Competitive profit maximisation is probably the canonial model in the

theory of the firm.

• We let yt denote an observed netput vector where yt = [y1
t , ...y

K
t , ] is

a signed vector of net outputs of K goods.

• So if the kth element is positive it’s an output, and if it’s negative it’s

an input.

• The prices (of inputs and outputs) are pt = [y1
t , ...y

K
t , ].



Firms

• Given the sign convention on netputs the firm’s profit is just

p′tyt

• You can think of the netput vector being arranged as

yt =

[
yt
−xt

]
, pt =

[
pt
wt

]
so

p′tyt = ptyt −w′txt



Firms

• The key theoretical object is the production set: the set of technically

feasible input-output combinations: Y.

• Generally we assume that Y is negative monotonic (free disposal).

This says

if y ∈ Y and y′ ≤ y then y′ ∈ Y

• Once again we are interested in when there exists a production set

which rationalises a set of observations on a firm

Definition: A production set Y rationalises the data {pt,yt}t=1,...,T
if p′tyt ≥ p′ty for all y ∈ Y for all t = 1, ..., T.



Firms

Theorem‡. The following statements are equivalent:

A. there exists a production set which rationalises the data {pt,yt}t=1,...,T .

B. p′tyt ≥ p′tys for all s, t = 1, ..., T

C. there exists a close convex negative monotonic production set

which rationalises the data {pt,yt}t=1,...,T .

‡Hanoch and Rothschild (1972), Diewert and Parkan (1979), Varian (1984).



Firms

• Statement (B) is known as the weak axiom of profit maximisation

(WAPM).

• Firstly it is immediate that if (A) is true then (B) follows because the

production set must contain the observations {yt}t=1,...,T

• To show that if WAPM (B) holds, then that implies the existence of

a well-behaved production set (C) we construct one.



Firms

• Let Y = com− {yt}. This is the negative convex monotonic hull of

yt.

• To show that this rationalises the data consider an arbitrary point y

constructed as

y =
T∑
s=1

λs(ys + es)

where es ≤ 0 and
∑T
s=1 λs = 1.

• So y is any point which lies somewhere inside the constructed set. We

need to show that it gives a lower profit than the chosen point.



Firms

• We know that condition (B) means that p′tyt ≥ p′tys so

λsp
′
tyt ≥ λsp′t(ys + es)

for all s, t

• Summing over s gives

T∑
s=1

λsp
′
tyt ≥

 T∑
s=1

λsp
′
t(ys + es)


p′tyt ≥ p′t

 T∑
s=1

λs(ys + es)


p′tyt ≥ p′ty



Firms

• When there is a single output there is a very straightforward version

of WAPM.

p′tyt ≥ p′tys ⇒ ptyt −w′txt ≥ ptys −w′txs

• This can be rearrange to give

ptys ≤ ptyt + w′txs −w′txt

ys ≤ yt +
1

pt
w′t (xs − xt)

which is an Afriat Inequality composed of observables.



Firms

Theorem. The following statements are equivalent:

A. there exists a production function which rationalises the data

{wt,xt, yt, pt}t=1,...,T .

B. the data satisfy the Strong Axiom of Profit Minimisation:

ys ≤ yt +
1

pt
w′t (xs − xt) ∀s, t ∈ {1, ..., T}

C. there exists a continuous, monotonic and concave production

which rationalises the data {wt,xt, yt, pt}t=1,...,T .



Firms

All of the sort of questions which we looked at in the context of individual

choices can be studies in the firm context.

For example we can forecast conditional factor demands given new input

prices and output levels using WACM, or predict netputs given a change

in the prices of inputs and or final goods.

We can also test for imperfect competition and measure (in)efficiency.



Statistical Issues

• Revealed preference ”test” are deterministic: either the subject passes

in which case her behaviour can (heuristically) be regarded as being

that of a utility-maximiser, or she doesn’t in which case it cannot.

• This reflects the idea that the DGP is the deterministic model

max
q
u(q) subject to p′tq = yt

rather than a stochastic process.

• Important statistical considerations are present nonetheless.



Statistical Issues

1. we might only get to see sample of individuals from a larger population.

2. the data may very well be subject to measurement errors.

3. the individual may make optimisation errors which are stochastic in

nature.

• There is also an inferential question which arises even if we set aside

these other issues.



Afriat’s Theorem - A Bayesian View

• Under-determinism is a concept from the philosophy of science about

the relationship between theory and data.

”Most thinkers of any degree of sobriety allow, that an hypothesis

... is not to be received as probably true because it accounts for

all the known phenomena, since this is a condition sometimes ful-

filled tolerably well by two conflicting hypotheses...while there are

probably a thousand more which are equally possible, but which,

for want of anything analogous in our experience, our minds are

unfitted to conceive.”

J.S. Mill in A System of Logic ([1867] 1900, p328)



Afriat’s Theorem - A Bayesian View

• Suppose we observe a repeated observations on a single individual:

{pt,qt}t=1,...,T .

• Suppose they pass GARP. What are we to make of that?

• How justified might we be in thinking that this individual is, heuristi-

cally at any rate, really a utility-maximiser?



Afriat’s Theorem - A Bayesian View

• Clearly our assessment of this will depend on

1. the number of observations

2. the ability of the GARP test to detect non-rational behaviour.

• If we have few observations, or constraints which do not cross often,

then the evidence is probably weak and we should be unwilling to

conclude simply that since this person has passed GARP, she must be

a utility-maximiser.



Afriat’s Theorem - A Bayesian View

• We are interested in whether or not the individual is a utility-maximiser

(denoted U), given the data satisfy GARP (denoted G).

• Bayes’ Theorem gives

P (U |G) =
P (G|U)P (U)

P (G)
=

=
P (G|U)P (U)

P (G|U)P (U) + P (G|¬U)[1− P (U)]



Afriat’s Theorem - A Bayesian View

• Assuming no optimisation or measurement error then P (G|U) = 1

because a utility-maximiser will certainly pass GARP.

• So this gives us

P (U |G) =
P (U)

P (U) + P (G|¬U)[1− P (U)]

where P (U) is the prior.

• Bayes’ Theorem tells us how to weigh the evidence.



Afriat’s Theorem - A Bayesian View

P (U |G) =
P (U)

P (U) + P (G|¬U)[1− P (U)]

• If the GARP test is not very well able to detect non-rational behaviour

very well, then P (G|¬U) ≈ 1 and P (U |G)→ P (U).

• This means that the evidence of the successful GARP test should not

impress us much and should do little to shift our prior beliefs.



Afriat’s Theorem - A Bayesian View

P (U |G) =
P (U)

P (U) + P (G|¬U)[1− P (U)]

• If the GARP test is in fact very sensitive (for example, we have many

observations) and P (G|¬U) ≈ 0, then P (U |G)→ 1

• Consequently the GARP test gives us rational grounds to become very

confident that the individual is, in fact, a utility-maximiser.



Afriat’s Theorem - A Bayesian View

• The term P (G|¬U) is therefore centrally important to the way in which

we interpret a successful empirical GARP test.

• Its value depends on the alternative DGP (i.e. what ever ¬U is).

• The difficulty is that there are many alternatives to rational choice

models.



Afriat’s Theorem - A Bayesian View

• One important, non-rational alternative considered by Becker (1962)
was a probabilistic DGP: uniform random choice.

• Bronars (1987) applied this in an RP context by calculating the prob-
ability of observing a violation of GARP with this DGP operating on
the observed constraints.

• Bronars’ approach remains the most popular method but more recent
contributions (notably Andreoni, Gillen and Harbaugh (2013))), whilst
sticking with the idea of a probabilistic alternative DGP, consider more
data-driven alternatives to uniform random choice - they suggest draw-
ing from the empirical distribution of observed choices to allow for a
more realistic alternative.



Predictive Success

”... lack of variation in the price data limits the power of these methods”

Hal Varian (Econometrica, 1982, pp 966-7)



Predictive Success

P = the set of possible choices which satisfy the budget constraints.

S = the set of choices which also satisfy GARP.



Predictive Success

When we check RP conditions for an individual we look to see whether

their choices fall within the areas allowed by the restrictions.

The size of the target area provided by the restrictions is a sensible measure

of how demanding the restrictions are.

r ∈ {0, 1} : the pass/fail indicator.

a ∈ [0, 1] : the relative area of the predicted subset compared to the

outcome space.



Predictive Success

The simple hit/miss rate should not be the sole measure of the performance
of the theory (if it was, then nothing could do better than ”anything goes”).

• good theories combine good hit rates (high pass rates) with demanding
predictions (small areas);

• poor theories make imprecise predictions (large areas) which the data
fail to satisfy (low pass rates).

Suggestion: take account of both r and a.

This idea is due to Reinhard Selten (J. of Math Soc Sci, 1991) who devel-
oped it in the context of experimental game theory.



Predictive Success

Some suggested properties of a measure of predictive success m(r, a):

Monotonicity: m (1, 0) > m (0, 1) .

Equivalence of trivial theories: m (0, 0) = m (1, 1) .

Aggregability:. For every λ ∈ [0, 1]

m (λr1 + (1− λ) r2, λa1 + (1− λ) a2) = λm (r1, a1)+(1− λ)m (r2, a2) .



Predictive Success

Selten’s Theorem. The function, m = r − a satisfies the ax-

ioms. If m̃ (r, a) also satisfies these axioms, then there exist real

numbers {γ, δ > 0} such that m̃ (r, a) = γ + δm.

Remarks on the Theorem

Selten (J. Math. Soc. Sci., 1991) provides an ordinal characterisation of

r−a where he replaces aggregability with a continuity axiom and an axiom

which says that the difference between theories should be a function of the

differences between r’s and a’s. He uses stronger monotonicity axioms.



Predictive Success

m→ 1 : demanding restrictions and data which satisfy them.

m→ −1 : undemanding restrictions and yet the data fail to conform.

m→ 0 : the apparent accuracy of the data simply mirrors the size of the

target.



Predictive Success

An additional interpretation of m ≈ 0 is that the theory performs about

as well as a uniform random number generator

This interpretation provides a link between the measure discussed here

and the investigation of statistical power conducted by Bronars (Econo-

metrica,1987).

The alternative hypothesis is uniform random behaviour (as per Becker

J.Pol.E., 1962).

(1− a) can be interpreted as P (¬G | uniform random behaviour)



Predictive Success

We return to the Spanish Continuous Family Expenditure Survey data (the

Encuesta Continua de Presupuestos Familiares - ECPF) we saw last week.

r = 0.957

a = 0.912

m = 0.045



The distribution of ai



The distribution of mi



Predictive Success

• I’m not, of course, claiming that these particular results apply more

widely than the dataset/conditions studied here (more restrictive mod-

els, e.g. intertemporal models or HARP, seem to provide a great deal

of discipline on the data).

• But I am claiming that presenting results using these measures sheds

a great deal more light on the empirical performance of a theory than

does the uncorrected aggregate pass rate which is often reported in

the empirical literature.



Inference

• If the data involved are a random panel sample of households and
demands are measured without error, then inference about objects
like the proportion of households in the population which satisfy RP
restrictions is straightforward.

• A sample proportion can be viewed as the fraction of “successes” in
N independent Bernoulli trials with the same success probability p.

• The central limit theorem implies that for large N , the sample pro-
portion p̂ is normally distributed with mean p and standard deviation√
p (1− p)N so the statistic

z = (p̂− p) /
√
p (1− p)N ∼ N (0, 1)



Inference

• Inference with repeated cross-sections from a heterogeneous popula-
tion is more difficult.

• The issue here is that we do not see the same consumer twice, so we
cannot proceed on an consumer-by-consumer basis, checking the RP
conditions for each one as before.

• The object of interest remains the population proportion of consumers
who satisfy the RP conditions.

• However, this parameter depends on the joint distribution of choices
over different budget sets and repeated cross-sectional data do not
reveal this: only its marginal distributions can be observed.



Inference

Suppose we have a fixed population observed twice. In the first observation

they are distributed along budget constraint a and in the second on b. We

observe the two distributions but not the joint.



Inference

Let the proportion of the population on each segment be given by a1+a2 =
1 and b1 + b2 = 1. The population parameter of interest is the proportion
of people who behave rationally (pass GARP).

Because we cannot track individuals (we don’t observe the joint distribu-
tion) we have to think about best- and worst-case scenarios.



Inference

To make things easier suppose that the population consists of 100 people.

And that there are 50 people in a1, 50 in a2, 40 in b1 and 60 in b2 How

many people fail GARP?



Inference

Worst case: There were 50 people in a1. Suppose all of them moved to

b2. There are 60 in total in b2 so the other ten would have had to have

come from a2. What about the 50 on a2? They can go anywhere they like

on b and none of them will violate GARP. The 50 from a1 are all violating

GARP so the proportion who are irrational is at most 0.5.



Inference

Best case: There are 60 people on b2. At most only 50 could have come

from a2 so at least 10 must have come from a1. That means that 10

individual violated rationality and so the proportion who are irrational is at

least 0.1.



Inference

• Under these circumstances, the population parameter of interest is not

point identified. But we can bound the proportion of the population

which behave irrationally within the interval [0.1, 0.5] and hence the

rational proportion in [0.5, 0.9].

• Note that the actual distributions n the budget constraints don’t mat-

ter much – just the proportions in each “patch”.

• Hoderlein and Stoye (2013) show how to do inference on the sam-

ple analogue of this in the context of the Weak Axiom of Revealed

Preference (i.e. without transitivity).



Measurement Errors

• An important difference between structural econometrics and empirical

revealed preference lies in the absence of an error term in the latter.

• Certainly error terms rarely appear in revealed preference theory: there

is no mention of an error term in Afriat’s Theorem.

• But as soon as we attempt to take those revealed preference conditions

to data, errors can no longer necessarily be ignored.



Measurement Errors

• The most obvious situation arises when we consider measurement er-
rors, but identical issues arise when revealed preferences are applied
to statistical objects (like estimates of aggregate consumption as in
Browning (International Economic Review, 1989) or nonparametric
Engel curves as in Blundell, Browning and Crawford (Econometrica,
2003 and 2008)).

• In these cases the price-quantity data we observe is a function of a
random variable.

• This introduces a statistical element to empirical revealed preference
and forms an important link between revealed preference with struc-
tural econometrics.



Measurement Errors

• To illustrate the case for classical additive measurement error consider

the model

qt = q∗t + et

where q∗t denote the true values of demands and et is a vector of

classical measurement errors.

• Now the DGP is the deterministic economic model plus a stochastic

model.

• Suppose that we are interested in the null hypothesis that the true

data {pt,q∗t}t∈T satisfy GARP.



Measurement Errors

• If the RP conditions fail for the observed demands qt, it is possible

to generate a restricted estimator, q̂t using the following Gaussian

quasi-likelihood ratio or minimum distance criterion function:

L = min
{q̂t}t∈T

T∑
t=1

(qt − q̂t)
′Ω−1

t (qt − q̂t)

subject to the restriction that {pt, q̂t}t∈T satisfies GARP and where

the weight matrix Ω−1
t is the inverse of the covariance matrix of the

demands.

• The solution to this problem leads to demands q̂t, which satisfy the

RP restrictions and which are unique almost everywhere.



Measurement Errors

• Evaluated at the restricted demands, the above distance function also

provides a test statistic for the RP conditions.

• It can be used for conducting conservative inference.

• This test falls within the general class of misspecification tests inves-

tigated in Andrews and Guggenberger (2007, Section 7).



Optimisation Errors

• Instead of asking whether the outcome of an empirical RP test rep-

resents a statistically significant departure from a DGP in to which

a stochastic element has been introduced, we can also ask whether

the results of the test represent an economically significant departure

from rational choice.

• The key to this is to see that when a consumer violates RP conditions,

that consumer appears to waste money by buying a consumption bun-

dle when a cheaper bundle is available and also revealed preferred to

it.



Optimisation Errors

• The cost-efficiency measure suggested in Afriat (1967) is the smallest

amount of this wastage (as a fraction of the overall budget) consistent

with the given demand data.

• This index provides a simple way of measuring the size of a violation

of GARP and does so in units which are easy to understand and to

interpret economically.



Optimisation Errors

• The idea is to modify the revealed preference relation R, essentially

relaxing it to allow for some inefficency by the consumer.

• Normally we define ”directly revealed preferred to” using p′tqt ≥
p′tqs ⇔ qtR0qs and the transitive closure of R0 by R in the usual

way.

• Instead we say that qt is directly revealed preferred to qs at efficiency

level e using ep′tqt ≥ p′tqs ⇔ qtR0
eqs and define the transitive closure

of this relation as Re in the usual way.

• Then we have GARPe is qtReqs implies not qtP 0
e qs.



Optimisation Errors

• The number e can be thought of as how much less the potential

expenditure on a bundle has to be before we will consider it worse

than the observed choice.

• If e is 0.95, for example, we will only count bundles whose cost is less

than 95% of an observed choice as being revealed worse than that

choice.

• Said another way: if e is 0.95 and qs would cost only 2% less than qt
at pt prices we would not consider this a significant enough difference

to conclude that qt was preferred by the consumer to.qs



Optimisation Errors

• We are allowing the consumer a ‘margin of error’ of (1− e) .

• Afriat’s Critical Cost Efficiency Index, or the Afriat Efficiency Index for

short, is the largest value of e ∈ [0, 1] such that there are no violations

of GARPe.



Optimisation Errors

• If e = 1 then there are no violations of GARP in the original data, but

for e < 1 there are violations.

• Traditionally, researchers begin their analysis of consumer behavior by

setting some critical level of e , say e∗; such that they would consider

any e > e∗ a small or tolerable violation of GARP.

• Varian (1991), for instance, suggests a value of e = 0.95



Adding Structure

• In the basic model of rational demand that we discussed above, we

are considering any type of (well-behaved) utility function.

• But many models in economics depend critically on more particular

functional assumptions.

• For example: additive separability is essentially the defining charac-

teristic of expected utility theory.

• If you want to investigate with particular structures or particular mod-

els using RP we need more than just Afriat’s Theorem.



Adding Structure: Separability

“Separability is about the structure we are to impose on our model: what to investigate

in detail, what can be sketched in with broad strokes without violence to the facts.”

W.M. Gorman (1987

• Separability is the most important restriction used in applicable theory.

• It refers to certain restrictions on functional representations of pref-

erences or technologies which add structure to the decision making

tasks undertaken by economic agents.

• These restrictions also allow the economic researcher to study the

behavior of these agents in a more effective manner.)



Adding Structure: Separability

• Partition our data into two sets of goods and prices{{
p1
t ,q

1
t

}
,
{
p2
t ,q

2
t

}}
t=1,...,T

• A utility function is separable in the group 1 goods, if

{q1,q2} �
{
q1
∗,q

2
}
⇔ {q1,q2

#} �
{
q1
∗,q

2
#

}
for all q1,q1

∗,q
2 and q2

#.

• That is preferences within group 1 are independent of the composition

of group 2.



Adding Structure: Separability

• The functional representation is that a utility function u is (weakly)

separable in the the group 1 goods if we can find a ”subutility func-

tion” v
(
q1
)

and a ”macro function” w(v,q2) with w(v,q2) strictly

increasing in v such that:

u
(
q1,q2

)
= w(v(q1),q2)

• Separability confers two major simplifying benefits:

1. the ability to ignore certain things,

2. dimension reduction



Adding Structure: Separability

• What revealed preference conditions would reflect this structure?

• Recall we need both necessary and sufficient conditions.

• Clearly the entire data set must satisfy GARP since it comes from

maximisation of u(q1,q2).



Adding Structure: Separability

• Weak separability is also necessary and sufficient for the second (lower)

stage of two-stage budgetting.

• The sub-dataset must satisfy GARP since each q1 must solve the

problem:

max
q1

v
(
q1
)

subject to p1′
t q

1 = p1′
t q

1
t

• To see why suppose that q1
∗ satisfied the budget constraint and yielded

higher subutility. Then w(v
(
q1
∗
)
,q2
t ) > w(v

(
q1
t

)
,q2
t ) and p1

tq
1
∗ +

p2
tq

2
t ≤ p1

tq
1
t + p2

tq
2
t contradicting maximisation.



Adding Structure: Separability

• So the pooled data
{
p1
t ,p

2
t ,q

1
t ,q

2
t

}
t=1,...,T

and the sub-group data{
p1
t ,q

1
t

}
t=1,...,T

must satisfy GARP but we also need to allow for the

aggregating/dimension-reducing aspect of separability.

• Concavity conditions for the macro and the sub-utility functions are

u
(
q1
s,q

2
s

)
≤ u

(
q1
t ,q

2
t

)
+∇q1

t
u
(
q1
t ,q

2
t

)′ (
q1
s − q1

t

)
+∇q2

t
u
(
q1
t ,q

2
t

)′ (
q2
s − q2

t

)
v
(
q1
s

)
≤ v

(
q1
t

)
+∇v

(
q1
t

)′ (
q1
s − q1

t

)



Adding Structure: Separability

• Denote vt = v
(
q1
t

)
.

• Then the concavity condition for w
(
v,q2

)
is is

w
(
vs,q

2
s

)
≤ w

(
vt,q

2
t

)
+
∂w

∂vt
(vs − vt) +∇w

(
vt,q

2
t

)′ (
q2
s − q2

t

)



Adding Structure: Separability

• Optimising behaviour (first order conditions) gives us

∇q1
t
u
(
q1
t ,q

2
t

)
≤ λtp

1
t

∇v
(
q1
t

)′
≤ µtp

1
t

∇q2
t
u
(
q1
t ,q

2
t

)
≤ λtp

2
t

∇q2
t
w
(
vt,q

2
t

)
≤ λtp

2
t

where λt is the marginal utility of income and µt is the marginal utility

of income allocated to the q1 group, that is the Legrange multiplier

on the problem

max
q1

v
(
q1
)

subject to p1′
t q

1 = p1′
t q

1
t



Adding Structure: Separability

• Define

ρt =
∂w

∂vt

• Then the concavity conditions become

u
(
q1
s,q

2
s

)
≤ u

(
q1
t ,q

2
t

)
+ λtp

1′
t

(
q1
s − q1

t

)
+ λtp

2′
t

(
q2
s − q2

t

)
v
(
q1
s

)
≤ v

(
q1
t

)
+ µtp

1′
t

(
q1
s − q1

t

)
w
(
vs,q

2
s

)
≤ w

(
vt,q

2
t

)
+ ρt (vs − vt) + λtp

2′
t

(
q2
s − q2

t

)



Adding Structure: Separability

• From the chain rule we have

∇q1
t
u
(
q1
t ,q

2
t

)
=
∂w

∂vt
∇v

(
q1
t

)
= ρtµtp

1
t

• We also had

∇q1
t
u
(
q1
t ,q

2
t

)
≤ λtp1

t

• So
λt

µt
= ρt



Adding Structure: Separability

• The concavity/optimality conditions are therefore

u
(
q1
s,q

2
s

)
≤ u

(
q1
t ,q

2
t

)
+ λtp

1′
t

(
q1
s − q1

t

)
+ λtp

2′
t

(
q2
s − q2

t

)
v
(
q1
s

)
≤ v

(
q1
t

)
+ µtp

1′
t

(
q1
s − q1

t

)
w
(
vs,q

2
s

)
≤ w

(
vt,q

2
t

)
+
λt

µt
(vs − vt) + λtp

2′
t

(
q2
s − q2

t

)

• The final step just replaces the values of these real-valued functions

with real numbers.



Adding Structure: Separability

Theorem (Varian (1982), Afriat (1967)). The following condi-
tions are equivalent:
(1) there exists a weakly separable, concave, monotonic, continu-
ous non-satiated utility function that rationalises the data;
(2) there exist numbers {Vt,Wt, λt > 0, µt > 0}t=1,...,T that sat-
isfy:

Vs ≤ Vt + µtp
1′
t

(
q1
s − q1

t

)
Ws ≤ Wt +

λt

µt
(Vs − Vt) + λtp

2′
t

(
q2
s − q2

t

)

(3) the data
{
p1
t ,q

1
t

}
t=1,...,T

and
{

1/µt,p
2
t , Vt,q

2
t

}
t=1,...,T

sat-

isfy GARP for some choice of {1/µt, Vt}t=1,...,T that satisfies the
Afriat inequalities.



Adding Structure: Separability

• There is no explicit mention of a condition corresponding to an Afriat

condition for the entire dataset or the statement ”the entire dataset

satisfies GARP”.

• This is because that condition is implied by the other two [hint: add

the other inequalities up].

• There is also a new computational problem. This can be seen in two

ways which are equivalent.



Adding Structure: Separability

• The first is that it is necessary to find a set of Afriat numbers {1/µt, Vt}t=1,...,T

which represent a group quantity and price index such that

1. they satisfy the Afriat inequality Vs ≤ Vt + µtp
1′
t

(
q1
s − q1

t

)

2.
{

1/µt,p
2
t , Vt,q

2
t

}
t=1,...,T

satisfies GARP

• The difficulty is that the numbers which satisfy (1), if they exist, are

not unique.



Adding Structure: Separability

• The second way to see the problem is to look at the Afriat inequality

Ws ≤Wt +
λt

µt
(Vs − Vt) + λtp

2′
t

(
q2
s − q2

t

)

• The issue is whether there exists a solution, or not.

• This is known as a ”certification” problem.



Adding Structure: Separability

• For linear inequalities certification is possible thanks (in theory) to

a result call Farkas Lemma and thanks (in practice) to the simplex

algorithm

• But these inequalities are non-linear in unknowns.

• There exists no certification method which is guaranteed to converge

in a finite number of steps.



Adding Structure: Separability

• It is therefore possible in principle to determine whether or not data are

consistent with utility maximisation and a weakly separable preference

relation.

• But it is not always possible to show that data are not consistent with

that structure.

• Of course failure of just one of the necessary conditions would be

enough to rule it out.



More structure: additive separability

• A stronger assumption than weak separability, and one which is almost

as frequently made is additive separability.

• We say a utility function u(q1
t ,q

2
t ) is additively separable if we can

write it as

u(q1
t ,q

2
t ) = v(q1

t ) + w(q2
t )

for some utility functions v(q1
t ) and w(q2

t ).



More structure: additive separability

• Since additive separability implies weak separability we know immedi-

ately that one condition is that there must exist some “Afriat numbers”

{Vt,Wt, λt > 0, µt > 0}t=1,...,T that satisfy:

Vs ≤ Vt + λtp
1′
t

(
q1
s − q1

t

)
Ws ≤ Wt + µtp

2′
t

(
q2
s − q2

t

)



More structure: additive separability

• The first order conditions for overall utility maximisation imply that

∇q1
t
u
(
q1
t ,q

2
t

)
= ∇w

(
q1
t

)′
≤ λtp1

t

∇q2
t
u
(
q1
t ,q

2
t

)
= ∇v

(
q2
t

)′
≤ λtp2

t

• This means that the marginal utility of income is equalised across the

groups. Hence we can take λt = µt



More structure: additive separability

Theorem. The following two conditions are equivalent:

(1) there exist two concave, monotonic, continuous utility func-

tions whose sum rationalises the data;

(2) there exist numbers {Vt,Wt, λt > 0, µt > 0}t=1,...,T that sat-

isfy:

Vs ≤ Vt + λtp
1′
t

(
q1
s − q1

t

)
Ws ≤ Wt + λtp

2′
t

(
q2
s − q2

t

)
for all s, t ∈ {1, ..., T}.



More structure: additive separability

• Once again there is no explicit condition which applies to the entire

dataset but such a condition is implied by the two conditions stated.

• There is no GARP-like condition for this model: you have to work

with the Afriat Inequalities.

• The Afriat conditions for additive separability are linear in unknowns

this is easy to implement - unlike the condition for weak separability.



Adding Structure: Returns to scale

• Constant returns to scale is another example of a functional restriction

(on a production function in this case) which is often useful to know

about.

• The basic result for profit maximisation with a single-output produc-

tion function was SAPM:

ys ≤ yt +
1

pt
w′t (xs − xt) ∀s, t ∈ {1, ..., T}

• Obviously constant returns to scale is a special case of this so the data

will have to satisfy SAPM plus another condition.



Adding Structure: Returns to scale

• To briefly recap the SAPM theorem we suppose that the production

function is concave: f (xs) ≤ f (xt) +∇f (xt)
′ (xs − xt) where ys =

f (xs) and yt = f (xt).

• Optimising price-taking behaviour says that the firm should use inputs

until the marginal revenue product is equal to the price of each input:

pt∇f (xt) = wt

• So combining these gives SAPM:

ys ≤ yt +
1

pt
w′t (xs − xt)



Adding Structure: Returns to scale

• A production function has constant returns to scale if it is homoge-

neous of degree one:

f (λx) = λf (x)

• Another very useful property of hod1 functions is that

f(x) = ∇f(x)′x

which is due (on the balance of probabilities if nothing else) to Euler.



Adding Structure: Returns to scale

• Using the optimality (pt∇f (xt) = wt) implies that

∇f (xt) =
1

pt
wt

• Therefore using the hod1 property we get

yt = f(xt) = ∇f(xt)
′xt=

1

pt
w′txt



Adding Structure: Returns to scale

Theorem. The following statements are equivalent:

A. there exists a constant returns to scale production function

which rationalises the data {wt,xt, yt, pt}t=1,...,T .

B. the data satisfy the conditions

ys ≤ yt +
1

pt
w′t (xs − xt) ∀s, t ∈ {1, ..., T}

yt =
1

pt
w′txt

C. there exists a continuous, monotonic and concave constant re-

turns to scale production which rationalises the data {wt,xt, yt, pt}t=1,...,T .



Adding Structure: Returns to scale

• This way of presenting the result accentuates the fact that the CRS

structural assumption adds a condition to the empirical requirements:

the data has to satisfy SAPM plus another condition.

• You can (of course!) combine the two conditions

ys ≤ yt +
1

pt
w′txs −

1

pt
w′txt ∀s, t ∈ {1, ..., T}

ys ≤
1

pt
w′txs ∀s, t ∈ {1, ..., T}



Adding Structure: Returns to scale

• Combining this with yt = 1
pt
wt Varian (1984) takes ratios to get the

condition::

ys

yt
≤

w′txs
w′txt

∀s, t ∈ {1, ..., T}

• This is less clear economically, but computationally it is simpler.

• The RP test for homothetic utility functions is basically identical -

work it out as an exercise.



Adding Structure: Characteristics

• The linear characteristics model is due to Gorman (1956).

K market goods : q
J characteristics : z

J < K

max
q
v (z) subject to z = A′q and p′tq ≤ xt

• The structure is akin to separability but with complete overlap across

groups rather than a partition.



Adding Structure: Characteristics

Definition: A utility function v (z) rationalises the data {pt,qt}t=1,...,T

for the technology A if v (zt) ≥ v (z) for all z such that zt= A′qt,
z = A′q and p′tqt ≥ p′tq.



Adding Structure: Characteristics

Theorem.The following statements are equivalent.

(P ) there exists a utility function v (z) which is non-satiated, con-

tinuous and concave in characteristics which rationalises the data

{pt,qt}t=1,...,T for given A.

(A) there exist numbers {Vt, λt > 0}t=1,...,T and vectors {πt}t=1,..,T

such that

Vs ≤ Vt + λtπ
′
t

(
A′qs −A′qt

)
(A1)

pt ≥ Aπt
(

with equality if qkt > 0
)

(A2)



Adding Structure: Characteristics

• The model is

max
q
v (z) subject to z = A′q and p′tq ≤ xt

• Maximising behaviour and linear structure

λtpt ≥ A∇v (zt) = ∇u (qt)

πt =
1

λt
∇v (zt)

pt ≥ Aπt (A2)



Adding Structure: Characteristics

• Using the standard property of concave functions

v (zs) ≤ v (zt) + ∇v (zt)
′ (zs − zt)

• Given pt ≥ Aπt and zt = A′qt

v (zs) ≤ v (zt) + λtπ
′
t

(
A′qs −A′qt

)
Vs ≤ Vt + λtπ

′
t

(
A′qs −A′qt

)
(A1)



Adding Structure: Characteristics

• We have T overestimates of the utility of an arbitrary bundle

V (z) ≤
{
Vs + λsπ

′
s (z− zs)

}
s=1,...,T

so take

V (z) = min
s

{
Vs + λsπ

′
s (z− zs)

}
s=1,...,T

as a utility function (it’s piecewise linear, non-satiated, and concave).



Adding Structure: Characteristics

• Suppose we have some z = A′q with p′tqt ≥ p′tq.

V (z) = min
s

{
Vs + λsπ

′
s (z− zs)

}
≤ Vt + λtπ

′
t (z− zt)

• Since p′t ≥ π′tA′ with equality when qkt > 0

p′tqt ≥ p′tq ⇒ π′tzt ≥ π′tz

• Since λt > 0 this means λtπ
′
t (z− zt) ≤ 0. So V (z) ≤ Vt.



Adding structure - summary

• Separability and returns to scale are two examples in which the precise

structure of preferences or technology is of interest.

• The basic condition remains, but this is augmented with further in-

equality restrictions reflecting the extra assumption of interest.

• By switching on/off this additional condition we can conduct a ”spec-

ification” search for particular properties of the model.



Adding structure - summary

• The additional restriction also helps with prediction - the prediction

has to statisfy the basic conditions (e.g. GARP) but also the further

restrictions created by the additional structure.

• They therefore sharpen the bounds by reducing the size of the set of

theory-consistent observations.

• This emphasises the general point that : stronger theoretical restric-

tions give you stronger predictions.



Empirical Revealed Preference - summary

1. A “elementary” way of combining theory and data.

2. We have looked at

(a) The basic ideas/results

(b) Practical issues in implementation

(c) Adding structure to models



Empirical Revealed Preference - summary

The good things about RP include:

1. It is simple and clean from a theoretical point of view

2. It focuses analysis on the behaviour of the individual, i.e. the level at

which the theory applies, and not the behaviour of statistics.

3. It does not rely on or indeed require errors.

4. It introduces loss functions to empirical work which are more econom-

ically meaningful than the sum of squared residuals.



Empirical Revealed Preference - summary

The bad things about RP include (but are not limited to):

1. Bounds on objects of interest can be so wide that it is close to useless

for practical day-to-day empirical work.

2. It is hard to satisfactorily connect RP to standard econometric practice.

3. When a model fails you cannot just throw in an error

4. When a model doesn’t fail what should you make of that when “all

models are wrong”?



Thanks

Comments suggestions and queries to

ian.crawford@economics.ox.ac.uk


